Nonparametric adaptive estimation for grouped data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric adaptive estimation for grouped data

The aim of this paper is to estimate the density f of a random variable X when one has access to independent observations of the sum of K ≥ 2 independent copies of X . We provide a constructive estimator based on a suitable definition of the logarithm of the empirical characteristic function. We propose a new strategy for the data driven choice of the cut-off parameter. The adaptive estimator i...

متن کامل

Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data

The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...

متن کامل

Isotonic estimation for grouped data

A non-parametric estimator of a non-increasing density is found in a class of piecewise linear functions when the data consist only of counts. An EM-Algorithm for computing the estimator is developed, and the iterates in the algorithm are shown to converge to the maximum likelihood estimator. Potential applications to distance sampling models are described and illustrated with a numerical examp...

متن کامل

Nonparametric estimation for dependent data

Nonparametric estimation for dependent observations has a long history in statistics. Rosenblatt [42] first studied density estimation for dependent data. Since then several authors have considered nonparametric estimation under various assumptions (notable early articles include Robinson [39] and Hart [29]). For example, Hall and Hart [25], Giraitis et al. [22], Mielniczuk [34] and Estevas and...

متن کامل

Adaptive Drift Estimation for Nonparametric Diffusion Model

We consider a nonparametric diffusion process whose drift and diffusion coefficients are nonparametric functions of the state variable. The goal is to estimate the unknown drift coefficient. We apply a locally linear smoother with a data-driven bandwidth choice. The procedure is fully adaptive and nearly optimal up to a log log factor. The results about the quality of estimation are nonasymptot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Planning and Inference

سال: 2017

ISSN: 0378-3758

DOI: 10.1016/j.jspi.2016.10.002